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Errata and Additional Theory to Clarify Some Statements
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C.L. Amba-Rao

Final Report Submitted under
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Line 3 from bottom, replace (39) by (42).

Line 2 from bottom, replace (43) by (46).

Line 13 from top, add "(tension force is positive, and compressive force
force is negative)".

Line 1 from top, replace "unloaded,” by "freely".

Add after equation (28), "The physical mferpretahon of the boundary
conditions is as follows:

The boundary conditions represent moment free support in transverse bending
with membrane action being resisted by stiffeners (at the edges) rigid along
their own axis (and thus capable of taking membrane shear loads

62F

ax0dy

inthe x, y - plane"

) ., but non-resistant towards loads perpendicular to their axes and

(Reissner, E. "Non-linear Effects in Vibrations of Cylindrical Shells", The
Ramo-Wooldridge Corporation Rep. No. AM 5-6, 1955, p. 15).

Line 5 from top, add "with respect to x"after sine transforms
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Line 1 from bottom, replace "F,, and F,, ...." by "F, . and F_,...".

22 22

Lines 2 to 6 from the top should read as

5E, = - 5.54%8. . x 10® A2

5E, = 5.933.. x 107 AL

56, = 72174, . x 100 A2

5, = - 1.7082. . x 107 AL

S5E, = 7.4502. . x 100 A2
Line 7 from top should read as

SE, = 1.763377574272 x 107 Afﬂ

Line 2 from bottom, add ")" at end.

Equation (47) now should read as

Ay [(303.05 -314.42k) + -;- (=107 + 437 - 5.44) 10° A2 ] - 0.

Line 2 from bottom, replace 0.000175 by  0.000175V/5".
Line 1 from bottom, replace 0.0044 by 0.0044+/5.

Equation (49) now should read as

Ay [(155.16-160.98k)+-]5(-85.7+349.7-4.35) 10° A2 ] = 0.

w w
Li 8 f b | mox mdx
Ine rom bottom, replace h y —"—\/5—, h

In equation (50) replace Nx by in
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Line 26 from top, replace ”compression force Nx " by "force in "

Add the following sentences at the beginning of Section 3.2, for
clarification.

"In Sections 3.2 to 3.4, both inclusive, the analysis presented is for Nx
assuming the edgewise force is tension. If in is compressive, as it is for
n

the problem in hand, replace in by - Nx'

i
Add at the bottom of the page.
"If m(number of half waves in x direction) = 4 and n(number of half

waves in y direction) = 1, and sections of the buckled plate on y =0

and x = % m (m, an integer < 4),  then Dx = Dy (under the

assumption that the boundary conditions at the four edges of the square panel
of side b arealike) M =M ), and D =D . It follows
xy y X Xy y X

automatically that the neutral surface in the buckled position coincides with
the neutral surface of the undeflected plate”.

Line 3 from top, replace "simply" by "freely".

Line 2 from top, replace (39) by (42).
Line 4 from top, read E = 10 x IO6 .

Line 2 from top, replace (43) by (46) .

Add the following after equation (G5).

"Note A
2
w = = (ﬂ) sin 4nx cos Lo
X X a a b
and
3.84 Eh3
in = - k ——l?—— as in is a compressive force. If the
above values are substituted in the term - in W of (G4), one gets
4x 2 4ux nylk 3.84 Eh3
- A —_— sin cos SL (X222 BT ) of (G5)
41\ a a b b2

o7
!
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Line

Line

Line

Line

Line

11 from top, replace -107.1129 by - =
_ 856.9028

- 856.9028 by :

12 from top, replace 437.1314 by £7—5-]3—]i and
349.7051 by 2201

13 from top, replace - 544.2502 by - s

435.4001 |

- 435.4001 by - =

w w
5 from top, replace .y by =T,

3 from bottom, replace '\—l:" by 7y5=h

107.1129

544.2502

and

and
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SUMMARY [1L4 2

A convenient method is presented to analyze the problem of a buckled panel, typi-
cal of the S - Il stage forward skirt, under acoustic loads. It is proved that the
total response (deflection) w consists of two components, the static and the
dynamic, and superposition in a modified form is valid. The static component of
the displacement of the deflection surface in the post buckled state is calculated,
using von Kdrmdn equations, and Galerkin method. The dynamic component of
response is calculated formally, utilizing the concept of equivalent fictitious
uniformly thick anisotropic plates for small vibrations due to acoustic loadings.
Having obtained w, the method of analysis to obtain the principal strains, is

formulated.
AuwTHCOR
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1.0

1.1

1.2

INTRODUCTION

Aircraft and aerospace structures, because of severe weight limitations, normally use
thin plates as structural elements. As a consequence, many structures are used in a
post-buckled state. "The critical load for a rod is practically the ultimate load; the
plate fixed on all edges, however, can support a load which exceeds the critical load
tenfold" according to Bolotin (ref. 1), a well-known authority in the field of elastic
stability.

In addition, thin plates subjected to compressive forces in one direction are expected
to survive the environment of dynamic forces. The purpose of this study is to determine
the dynamic characteristics and the structural response of the buckled panel.

The compressive loads arise from the inertia and thrust loadings and vehicle bending
during adjustments in flight path. Also present, but not considered in this study, are
the tension loads due to internal pressure and vehicle bending. In essence, it is
estimated that many combinations of tension and compression can and do exist. The
dynamic forces consist of oscillating shocks, steady and unsteady aerodynamic forces,
and acoustic loads.

The present study is concerned with small vibrations of a rectangular plate, under a
uni-axial inplane compressive load system, (as it is most critical) and lateral dynamic
forces. The object of the present investigation is to obtain information regarding the
response (deflection and stresses), frequencies, and mode shapes.

Literature Survey

A literature search of publications, in fields which are closely related to the problem

at hand, is made. A representative list consists of the following references (refs. 2 - 6).
The starting point, invariably, is the non-linear partial differential equations of large
deflection theory of plates, known as von Kdrmdn, Tsien equations (ref. 7). With few
exceptions, most of the investigators utilized energy methods, perturbation methods,

and power series methods (ref. 8) of analysis. The linear theory of plates (the deflections
are small as compared to thickness) is not valid, if the static behavior of plates in post-
buckled state is to be investigated. For the dynamic behavior of plates, the classical
small vibration theory is valid as the amplitudes are "small" ; and "jump phenomena"

is not noticeable, under acoustic loads. :

Method of Approach

In this study, it is proposed to use methods of analysis, which are conceptually different
from those of the earlier investigators. The given problem is divided into two parts and
the responses calculated separately; and then superposed.

The rectangular panel under study along with its coordinate system is shown in Figure 1.
The problem, in Figure 1, is equivalent to that shown in Figure 2, if the regions at the
ends in close proximity, (where the inplane loads of Figure 1 are replaced by the
statically equivalent loads of Figure 2) are ignored.
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2.1

Let us concentrate our attention on a plate element of width unity, as shown in
Figures 3 and 4.

The present state of knowledge of the buckling strength of metallic structures can be
summarized as follows. (ref. 9).

“The buckling load of a plate is considerably increased by lateral normal pressure.
The normal pressure causes a much smaller increase in buckling load of a plate with
fixed edges than that of a plate with simply supported edges".

The above comments by Bleich (ref. 9), based on the work of Levy and his associates
stresses the importance of boundary conditions. It is very well recognized that
boundary conditions play a significant role in static and dynamic behavior of structural
elements (ref. 10).

A plate continuous over a number of supports and carrying normal and edgewise loads
has edge conditions which are "partially fixed". However, in the technical literature,
it is often found that mathematical convenience overruled the physical reality.

For simply supported plates, whose aspect ratio is 4, Levy and his associates assumed
the number of half waves in lengthwise direction equals 5 (compressive load is parallel
to the length), while Gerard (ref. 10) claims, it is 4. Levy also concluded that the
assumption of 4 or 5 half waves introduces an error less than 5 percent in the final
solution.

Superposition in a Modified Form of Beam-column Loadings and Responses

It is possible to superpose the response of the two beam-column effects of Figure 5,
under certain conditions.

The deflections and bending moments (stresses) in beam-columns are not proportional to
the axial end compressive loads. However, if the end compressive load remains

constant, the responses can be superposed, (ref. 11) in a modified form.

For the simply supported "beam" of Figure 5 (a)

82 w4 32 Wy
D + v —|= M, - Pw (1)
8x2 8y2 1 1

where

M] is the bending moment due to the lateral load, D is the flexural rigidity of the



plate, v is Poisson's ratio, w is lateral deflection, and P is the axial end
compressive load.

For the "beam” of Figure 5 (b)

82 w, 32 Wo
D 2 + v 2 = M2 - Pw2 (2)
dx dy
where
M2 is the bending moment due to the lateral load.
Adding (1) and (2), (3) is obtained:
.2 2
a a
D w, + w,y) + v —5 (w;, + w
8x2 ( 1 2) ay2( 1 2)
= (M]+M2)- P w, (3)

Equation (3) is the differential equation of bending of the "beam" of Figure 4, where

M] + M2 is the bending moment due to the total lateral loads 9, * 9y whose

response is w, + w, Equation (3) is still valid in the special case when 9 and

M, are zero.

1

The only assumption made in the derivation of the superposition of the beam column
effects is that the bending moment of a plate element is defined by the expression

2 2

ax dy

even in the post-buckled state.This analysis is performed under the restrictive
assumption that the deflections of the plate are con sidered to be finite, even though
sufficiently small, so that the slopes of the plate elements are negligible as compared
to unity. The above assumption is realistic as many investigators, including
Timoshenko (ref. 12) studied post-buckling behavior of plates, under the above
limitations.



In Section 2.0, the deflection of a plate without any lateral load, but under a
uni-axial compressive load, in a post-buckled state, is examined. In Section 3.0,
the deflection of a buckled (corrugated) plate with lateral load and under a
uniaxial compressive load, is analyzed.

The analysis is based on the assumption of elastic behavior of the plate.



2.0

MATHEMATICAL FORMULATION OF THE PROBLEM-STATIC DEFLECTION OF
THE BUCKLED PLATE

In the following analysis, let the xoy plane be the middle surface of the plate,

and let oz be the direction of the lateral deflection. The plate is subjected to in-
plane static compressive loads, and to lateral acoustic loads in the z direction.

A typical repeating section of the plate bounded by two stiffeners at two sides of the
plate, is analyzed. The stiffeners are parallel to x axis as shown in Figure 2. The
thickness of the plate is h. In the absence of body forces, the two well-known non-
linear partiél differential equations of compatibility and lateral equilibrium for bending
of plates irf the case of finite (but not too large) deflections known as von Kdrmdn -
Tsien equations (ref. 7) are (the deflections are no longer small as compared to
thickness).

AAF=V4F=Ew2-w w (4)

N
q=0=DV4w-—h|:Fw +F w - 2F w +-—-—w] (5)
XX yy Yy = Xxx Xy Xy h  “xx

where E isthe Young's Modulus of elasticity, A (= V2) represents the Laplacian
Operator, F is the Airy stress function, w is the lateral deflection of the plate,
in is the constant initial stress resultant, h isthe plate thickness, and q is

the load per unit area applied to the lateral surface of the plate. The derivations
of (4) and (5) are shown in Appendix A. The flexural rigidity is
3 .
D = Eh (é)
12(1 - %)

where v is Poisson's ratio. Equations (4) and (5) are derived under the
assumption that the deflections are finite, even though sufficiently small, so as to
neglect the angles of rotation in comparison to unity. A consequence of this
assumption is that the simplified formulae for curvatures of a plate are applicable.
In this report, an approximate engineering solution is presented.



2.1

2.2

2.2.1

Method of Solution of Buckled Plate in Postbuckled State

The deflection w (x , y) of the plate (Figure 6) in postbuckled state, is expressed
as a series of assumed functions in the following form, after Levy and Navier (ref. 12)

o)
wix, y) = Z
m=4

Since the plate is continuous in both x and y direction and the plate is connected
at few isolated rivets to the stiffeners, in this report, simply supported edge conditions
are assumed for the plate.

Amn sin m;rx cos nEy . (7)

NgL

n=1,3

w (x, y) should satisfy the assumed geometric boundary conditions; they need not
satisfy the natural boundary conditions. The number of buckles in the x and y
directions depend upon the plate geometry and boundary conditions (ref. 10). For
the conditions assumed, m equals 4 and n equals 1, where m and n are the
number of half waves in the x and y direction. However, note that explosive
changes of wave pattern to a different stable position can and do occur. This
phenomena is known as "“oil-canning". Using (7) in (4), one can obtain F as
shown below in the next section.

Calculation of Stress Function

First Approximation:

Replacing w (x, y) by the first term of the infinite series; and substituting the
derivatives of w in (4), one obtains (refer to Appendix B for details.)

2 2
o= ea (4] (1) [2 dux 2 1y




where

(9)



2.2.2

Fourier Finite Sine Transform of the Nonhomogeneous Partial Differential Equation.,
There are various methods by which (9) can be solved. One convenient method
of analysis, (refs. 13 and 14) is by application of Fourier finite sine transforms

with respect to x on (9). The boundary conditionson F at the simply supported
edges x = 0 and x = a are (ref. 6)

F = F = 0 - (10)
The Fourier finite sine transform with respect to x is defined by the following

a

T[F(x, y>] = Flp, y) =f0 Floy) sin B2 ax - (1)

Utilizing (10), (11), and Appendix C, (9) reducesto
4 2.2 4| -
[D-2ﬁD +B]F(p,y) = B f, () L p)
+ B]fz()’) L2(°: P) (12)
where D = 2 and B = pT
dy ' a

Further, L] and L2 are the Fourier finite sine transforms with respect to x of

4mx

c052 and sin2 ‘-"Z—X respectively. [The details of the derivation of Ll<

(k =1, 2) are shown in Appendix D] .

Note that

a -1P -

L, = —(=1)P 41 _232 [(-1P -1 4 § 1) ”

1 (8 [ PE——
(+P) { } P (_;—4) (13)

and
- _—=2a |,_qP._ 2 .1 1,
2 = s () [ 2(2-%)] 19



2.2.3

Complete Formal Solution of Stress Function.

To solve (12), it is convenient to separate F into two parts, the homogeneous

solution I-:] , and the particular integral E2’ where

The solution of the homogeneous equation

4 2.2 4\ =
(D-2[3D +B)F](p,y)= 0
is well-known and is (see Appendix E for details)
IE] (p, y) = < sinh By + C, cosh By
+ C3y sinh By + C4y cosh By -

Particular Integral:
The method of undetermined coefficients is utilized to obtain the particular
solution l-:z of the differential equation (12).

4 2.2 . _4) = |
(D - 2¢°D +B)F2(p,y)=B]f1L] + B oLy -

Let |

Folpry) = By L Fyy(pry) + By L, Fonlp, )

(15)

(16)

(17)

(18)

(19)

where f—:2] and ?22 are solutions of equations, (20) and (21). Note super-

position of solutions is valid for a linear differential equation.

(D4 - 2%D% 4 ;34) For = f
and
(04 - 2p20% + p4) Fy =y

(20)

(21)



=  _ 1|1
For = 2|7 - 2 (22)
P (2 41r2
o)
2
_ e sin <5- Y
Fo = 2|7 2 (23)
TP )
B + 2T
2

Now (12) isrewritten as (24), using (15), (17), (18), (19), (22), and (23).

The complete solution of (12) is given by

F = C, sinh By + C_ cosh By

] 2

+ C3y sinh By + C4y cosh By

+ B] L] F2] + B] L2 F22 (24)

where

E21 and F22 are defined by (22) , (23) ;

L] and L2 are defined by (13) , (14) .

In view of the symmetry of loading, geometry, and boundary conditions,
b = b
Flpr 5) = Flp, - 3) - (25)

C, =0 and c, = 0 - (26)

10



At the unloaded, supported edges y = + (ref. 6) :

b
2

and

Therefore (29) and (30) reduce to

|
™
—
o
-

N| o
S
1
o

= b
Fy(Pr3)

Fyy(p’_'g_) i} -F-(p,-%)= o

Substitution of (26) in (24) reduces (24) to (33), denoted by

F = C, cosh By + C3y sinh By

b Fy 1Ly Fap

where

B] is defined by (9) ,

L] and L2 are defined by (13) and (14)

F22 and F,_, are defined by (22) and (23) .

22

11

(27)

(28)

(29)

(30)

(31)

(32)

(33)



Applying the two transformed boundary conditions of (31) on (33), one derives

b
- B, {sech -B—— L.+ L
c, = ‘ 42)(‘ 2) %b tanh BE 4+ 2 (34)

, 3

B

and
B. (L. + L
c, = ‘(; 2) sech f“—zb- (35)
4B

Flp,y) = C2 cosh By + C3y sinh By

+ By [L] Fop + Ly F22] (36)
where

C, and C, are defined by (34) and (35) .

2 3
The inverse Fourier Finite sine transform (ref. 13) with respect to x is defined

by

[0 0]
Fx,y) = -z—z Fp,y) sin B2Z (37)
p=1

If we assume that the first term of the truncated infinite series is a good approximation
(replace p by 1), then (37) reducesto (38)

Flouy m = F(1,y) sin ZX (38)

An approximate stress function is formally derived, as presented in (39).

12



b\ [~ —
-B (sech E——) (L + L )
Fx, y) = '3—{ ! 2 ] 2 %Efcmhp—é+2cosh By

4B4 2
B (f + f)
. ]3 2 sech EZ— y sinh By
4p
- = - = . TX
+ B][ ]F2] + L2 FZZ]} sin. — (39)

where _L.] and T.2 define (13) and (14) with p=1.

2.2.4 Application to a Specific Problem.

Let us apply the analysis to a specific problem, a typical panel of Saturn S ilI.
(See Appendix F).

From (13) and (14)

= _ 62a
Ly = &= (40)
C _ b4a .

2  &3x (41)

. Fx, y) =~ [E] cosh By + E2 y sinh By + (E3+ E5)

. 2w . WX
+(E4 + Eé) sin F—y] sin —— (42)

13



where

E] = =-5.545815093792 x
E2 = 5.936356937513 x
E3 = 7.217449305230 x
E4 = =1.708272024815 x
E5 = 7.450270250789 x
E 6 " 1.607793440693 x

The above values of EI< k =1, 2,
details, refer to Appendix F.] .

10 A2
107 AL
10'° A2
107 Afﬂ
10" AL,
107 A2

... 6) are obtained on a computer.

The derivatives of (42) are as follows:

n

2
Fxx R~ -(-;-) [E] cosh By + E2y

sinh By +(E3 + E5)

+(E4 + Eé) sin -2b—“- y]sin T—;i(-

T

nyz (——) [E] B sinh By + E2 (yB cosh By + sinh By)

a

2w 2w ™X
+ T (E4 + Eé) cos -B—y] cos —

~ 2
Fyy~ [E] B~ cosh By + E, B (y

N

B sinh By + 2 cosh By

_(—bE) (E4 + Eé) sin -2—b1-r- y] sin 3—?—

14

[For

(43)

(44)

(45)



2.3

2.3.1

Optimization of Second Equation of Kdrmdn - Tsien by Ritz - Galerkin Method.

Now, w as defined by the first term of (7) and F, as defined by (42) and in

from ref. 9 are substituted in (5). Since w and the associated F are
approximate, (5) does not vanish. However, the expression (§) isa cubic in the
unknown parameter A4] . Therefore (5) should be satisfied in the mean, approximately,

by utilizing the Ritz - Galerkin method, defined by (ref. 3)
a +b/2

L.

[The detailed evaluation of (46) is shown in Appendix G ] .

dxdy = 0 - (46)

vl
>3

41

Reference 15 is utilized in the evaluation of the integrals of Appendix G.

Examples

Let us concentrate our attention on two different thicknesses of plate, namely h =
0.040" (Case 1) and h = 0.032" (Case 2) . The final results of Cases 1 and
2 are presented in Table 1.

For Case 1,
h = 0.040"

Eq. (46) reduces to
Ay [(303.05 - 314.42k) + (-107 + 437 - 5.44) 10° Afﬂ]= 0 (47)

where
K total load on the panel
Euler critical load of the panel
A4] = 0 (48)

is a trivial solution, corresponding to the unbuckled state of equilibrium condition.

If k = 1, i.e., ot the onset of buckling A4] equals 0.000175 , and

w
mox equals 0.0044 .

15



For Case 2,
h = 0.032"

Eq. (46) reduces to

Ay [(155.16 2160.98 k) + (-85.7 + 349.7 - 4.35) 10° Ail] =0. (49)

From reference 16, we know that a plate with 4 bays was subjected to 58,540 |bs.

Therefore, if we assume that each bay takes 1/4 of 58,540 Ibs. or 14,635 Ibs.,
then

L 14,635

N 273.6

xX cr

=~ 54 . (50)

The value of Nx o is obtained from reference 9.

For two different values of h, A4] which defines W is calculated. A non-

dimensional curve, defining k versus hmax is plotted in Fig. 7., and the

values corresponding to the nondimensional curve are evaluated in Table 1. It is
observed that all the values fall on the same nondimensional curve. If the non-
linear terms in (47) and (48) are ignored as a first approximation and if k = 1,
the equations are satisfied within engineering accuracy. These two observations
suggest that the analysis is reasonably free from algebraic errors.” However, the
author feels that the values for the depth of the buckle look low, probably due to the
fact that infinite series were replaced by single terms.
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3.0

3.1

3.2

MATHEMATICAL FORMULATION OF THE PROBLEM - RESPONSE OF THE
BUCKLED PLATE UNDER UNIAXIAL COMPRESSION AND LATERAL ACOUSTIC
LOADING

As explained earlier in Section 1.2.1, the second component of the response, which
is dynamic in nature, can be calculated by one of the following methods.

(1) strain energy methods

(2) methods of shallow shell theory
(3) plate with initial imperfections
(4) anisotropic plate theory

For the present analysis, it is proposed to apply the anisotropic plate theory type of
analysis, as it is simple; consistent with the fact that it gives reasonably accurate

answers (ref. 17) in a limited time.

Method of Equivalent (Anisotropic) Orthotropic (Buckled) Plates.

For ease of handling the problem analytically, the buckled plate is replaced by a
fictitious orthotropic plate of uniform thickness. (Materials which have three
mutually orthogonal planes of elastic symmetry are said to be orthotropic.) The
equivalent elastic constants of the orthotropic plates should be obtained from the
buckled state. The elastic constants are used in the linear non-homogeneous partial
differential equation shown in equation (51). The orthotropic theory and the
method of analysis are not new and are widely used in the calculation of static and
dynamic responses of corrugated plates, reinforced concrete s|obs, laminated
structural panels, wooden plates etc.

Dynamic Equations of Motion

Let w (x, y, t) be the transverse displacement of a vibrating orthotropic plate of
uniform thickness h. The governing equation for the deflection w, under the
combined action of the acoustic loading q and edgewise compression force Nx

(neglecting the rotary inertia and shear deformation) is:

4 4

4
D3V1+2(D]+2D)——————a;'2+D v
X ax XY/ ax dy 4 dy
: 2 2
d 3
- N .= = q,y, 1) - ph = (51)
ox ot

Assume the plate is subjected to a normal uniform (constant) acoustic loading.
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3.3

3.4

Introducing the notation,

H = D + 2D (52)
Equation (2) reduces to:
4 4 4 2
o, Ty v o e p L ) - qoen I
X ax ax“ ay Y 3y at
2
N (53)
Xy 2
dx

The solution of (53) with the associated boundary values and initial conditions is the
response of the buckled plate under (dynamic) acoustic loads.

Boundary and Initial Conditions

Referring to Figure 6, the boundary conditions at all the four edges are assumed
to be simply supported. Initial conditions for the fictitious corrugat ed plate may
be assumed to be specified displacement and velocity at t = 0.

Mathematical Analysis

Equation (53) is a linear, partial, non-homogeneous differential equation. There
are various classical methods available in the literature for its solution that are
consistent with the assumed boundary and initial conditions. We follow the
"variable separable" method, also called the product solution.

We assume that
wix,y, ) = X Y() T(@# - (54)

In view of the geometric boundary conditions at the edges x = 0, x = q,

and y = % % , the deflection surface function (54) may be written as
© o
- . mmx (2n+ VDwy
wix, y, t) E E sin ——— cos A Tmn(f) (55)
m=1 n=0



- e —— -

3.4.1 Homogeneous Solution

Substituting (55) in (53) , with q = 0 and dividing the entire expression by

sin

cos (2nt Ym Tmn , one obtains :

b
2 2 4
mw mmw 2n + 1 2 2n+1 4
o, (22)+ anfmr)” (222 ) 2o (220 )
2 T
v Sl I e
mn :

where dot denotes differentiation with respect to independent variable,time t.

In the following analysis, we focus our attention on a single harmonic and delete
the subscripts mn, up to end of (61) separating the space and time variables
of (56), we have

4 2 2 4 4
mw mm 2n + 1 2 2n + T
Dx(T) + 2H(—a—) ( D ) T+ Dy( b )

2 T ‘
+ in(ﬂ) = - ph Tmn = g, a constant (57)

mn

where g isreal (positive, negative or zero) or complex.

- ph Tmn = g Tmn (58)
i.e., Tmn = - 9 Tmn (59)
- - 9
where 94 oF
and 9 is real (positive or negative) or complex. The possibility that 9 = 0

is ruled out as T(t) should be bounded for large values of t.

19



3.4.2

Solution of (59) reduces to

T = G, Vot G, e 9t . (60)

If 9 is real and negative, T(t) has bounded solutions; if 9, is real and

positive, T has unbounded solutions and dynamic instability sets in. For this
analysis, we assume that there is no instability and the solutions are bounded.

9 is negative and let 9, = - 9 and 95 > 0.

Equation (60) may be rewritten as follows:

T = G3 cos \/gzt + G4 sin 9, (61)

where G3 and G4 are constants to be evaluated from the initial conditions.

Equation (55) reduces to

_ . mwXx (2n + 1w
wix, y, t) = E E sin —— cos ——b———x [G3 cong2 t
mn
m=1 n=0 '
+ G4 sin 9, f] . (62)
mn
The Complete Solution
Let us assume that the acoustic load may be expressed as:
q (XI YI 1') = QO (Xl Y) f(t) * (63)

Assume that it is possible to expand the spatial distribution of load QO (x, y),

as an infinite series, similar to the expansion of (62). Then
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@ ®
E ; z : . 2n + 1
QO (x,y) = Gy S1 m:x cos ( n:)— )my (64)

m=1 n=0
where
b
T e (2n+ N)n
/ /b Qo(x, y) sin ——b—l dx dy
9mn . +h 2
/ / 2 [sin mwx (2n+1)1rx] dx dy (65)
b a b
0 -3
Note
. b
/ / 2 [sin m:x cos —-———anl)“ ] [sin p:x cos (zq:;])“y]dx dy
b
0 -3
=0 if m#F p o n F g (66)

as the orthogonality property between the mode shapes still holds good.

The assumed solution for w namely (55), and (61) are substituted in (57) and
we obtain the natural frequency as

_ 1 T m 2n + 1 4
9% = R Dx(a ) *2”(‘0‘)( b ) ™
mn 1/2
4 2
2n+1 4 mmw
+D>'( b ) m NX(G) 7

The acoustic load is a time varying force, of an arbitrary nature, the time
dependent part of w (x, y, t) should include an additional contribution of
Duhamel integral type of representation, defined by

q t
\/@Tﬁ‘ﬂ [;f(ﬂ sin w(t-7) d
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3.5

where

9 is defined by (65) and

9, by (67).

- mn

Now (62) reduces to

©® o
wix, y, t) = E E [sin m:x cos Qﬂ—%—])—T-r—Y-][A cos /g, t
n=0 mn

m=1

q t
+ Bsin 92 t + mn / f('r) sin (1’ - ’r) dr ] . (68)
mn men

A formal solution of the dynamic response of a buckled plate is presented. To
evaluate (68) explicitly, knowledge of A, B, and f(t) are required.

The Response of the Buckled Panel under Acoustic Loading

The deflection of the panel consists of two components, namely the static component
and the dynamic component. The static deflection component is defined approxi-
mately by (7) with one term, where the coefficient A4] is defined by the

appropriate value for the plate of specified thickness. The dynamic component is
defined by (68) for any specified initial conditions and acoustic loading.
Explicit numerical values for the maximum principal strains is not possible at this
stage without a specific definition of the acoustic loading. However, the
analysis can be made as follows:

wix, y, 1) = Wy (x, y) + w, (x, y, 1) . (69)

(Eq. 7) (Eq. 68)

Having obtained w, following Timoshenko's notation (ref. 12), the following
generalized forces can be derived.

M = -p W% _p Ow (70)
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M =-p0 Zx - p 2 (71)
4 dx Y 3y
32w
Mxy = - 2DXY X3y (72)
Now the bending stresses can be expressed in terms of the bending moments as
follows:
12M z
o = X
X 3
h ]2Mxyz
T = (73)
XY (1= v R
12M =z
o, = h3
. . h
The maximum bending stresses occurat z = % 7

From the stresses defined by (23) one can derive the principal stresses by using
Mohr's circle or otherwise; and the principal strains by using (Al).

3.6 Evaluation of Elastic Constants of Equivalent Uniform Orthotropic Piates
h = 0.040"
assume I = s
Dx = Dy = 63
H = 42
= 9 .

[ The semi-empirical formulae presented by Seydel and reproduced on p. 367 of
(12) are utilized.]
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4.0

CONCLUSIONS AND RECOMMENDATIONS

The present theoretical analysis is based under certain assumptions mentioned below:
The four edges are simply supported. The modified stress function includes the end
compressive forces, which are constant even in post buckled state. The double
infinite series for w is replaced by the first term of the series. Similarly, the
inverse of the stress function, also an infinite series, is approximated by its first
term. The second nonlinear partial differential equation of von Kdrmdn is solved

in an average manner. All the above simplifying assumptions do introduce certain
errors. The methodology applied is conceptually different from any available in the
literature. A very interesting feature of the analysis is Figure 7. From the basic set
of equations, the depth of the buckle for two identical sheets, but of different
thicknesses, is calculated for various end loads in post buckled region. When
plotted in a non-dimensional manner, both the curves reduce to one master curve,
as they should.

The boundary conditions play a major role in all buckling problems; as such, the
realistic boundary conditions should be introduced in the theoretical analysis. if
one replaces any infinite series, by finite number of terms, one should consider more
than one term. However, this suggestion increases the algebra considerably .

To calculate the dynamic response, the buckled sheet is replaced by a fictitious
uniformly thick anisotropic plate. The buckled sheet which has 4 half waves in one
direction and 1 half wave in a perpendicular direction is replaced by a corrugated
sheet, with corrugations in one direction only. This is a crude approximation which
probably led to a great sacrifice in accuracy. For a more precise analysis, a more
realistic, equivalent anisotropic plate analysis has to be used.

Equation (68) defines the dynamic response of a buckled sheet, under acoustic
loading. For various mathematically tractable forcing functions, (68) can be

evaluated.

The value of this report could be enhanced by use of electronic computers and
additional analysis.
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APPENDIX A

THE EQUATIONS OF EQUILIBRIUM OF A PLATE ELEMENT
IN POST BUCKLED STATE

Let u, v, and w be the displacements parallel to the axes of x,y, and z,
respectively, where the z axis is normal to the plate; the equations of equilibrium
of a plate element can be derived from the well-known static equations of an element,
treated as a free body .

Assuming o, is negligible, the stress strain relations for a thin plate element in
bending are

1
STl vy
L
€y 7 E(oy—vox) (A1)
1
Yoy = G (Txy)
where E
ST
From (A1), we obtain
E
= +
x 1 - v2 (Cx v €y>
_ E
A €, +v &) (A2)
_ _ E
Txy Gny T2 +v) Txy

If there are no body forces acting in the middle plane of the plate, the differential
equations of equilibrium of an element dxdy in the plane of the element become
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(A6)

Eh "y + v aC"+l(1-v) Yy =0
1-v2 dy dy 2 X

With in-plane and normal loadings, q (lb per sq. in.), the equation of equilibrium
in z direction reduces to

2 2
vt = ER [(c sve )y (e s ve )t
X y 2 X 2
1-wv d x dy
82 w
+ (] = V) ny axay q (XIY)
(A7)
4 4 4
where V4=a4+2622+a4
ax dx dy ay
3
and D = _EL___Q_.
12 (] - v )
Following Timoshenko and von Kdrmdn, it is assumed that the deflections are not
small as compared to plate thickness, but small enough to justify the use of the
application of simplified formulae for curvature of a plate element.
The strain displacement relations for the large deflection plate theory are:
2
- Qv 1 (8w
Cx ~ 9x i 2 (ax)
2
_ dv 1 (3w
S Tt 2(37) A9)
_du v dw  dw
Yy T By T ax T Wx By



X —_—

+ 5y "
aNy

+ 55— "

(A3)

where Nx , N , and Nx are normal forces per unit length parallel to x and

y axes and shear force in xy plane (dimensions -:-%) respectively .

A
Fl

Noting that

and substituting (A2) in (A3), one derives the following equations.

great simplification can be made if one introduces a stress function defined by

which satisfies (A3).

J
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Differentiating the two equations of (A6) by x and y, respectively, and adding
the two equations, utilizing (A4) and (A8) ; (Aé) can be replaced by the
compatibility equation defined by
2
2 A2 2
) E[(gxg ) - a;]zo : (A9)
y S Ox dy

Utilizing (A4) and (A8), (A7) reducesto

V4

i

4 2w o°F . o*w 9°F
q = DV'w - h +
ax>  ay? 3y’ x>
x Y 4 x (A10)
_ ’F  olw
dxdy Oxdy

If the plate is under uniform uniaxial loading as in Figure 2, it is convenient to
separate the initial stress resultant in from Nx and define a new stress function,

defined by
N

-n
]
i

Then (A9) and (A10) are replaced by (A12) and (A13) defined by

2 2 2. .2
- e(Ey) - Lr Lx]- o wiz
xcy d x dy
and
2 2 2 2 32w
_ 4 dw 0 F o w dF xi
9 = DV w -h|=— — + — —5 *+ 7 2
dx dy dy dx d x
2 2
a_F d_w
-2 dxdy 0Oxdy ) (A13)
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APPENDIX B

THE DERIVATION OF EQUATION (8)

Let us work with one term of the infinite series of (7) .

Let

Then

kL

_ﬁ dn

= 'A41(b

sin -'%
dux . 2 Ty
cos lbL .

Substitution of (B3), (B4), and (B5) in (4) reduces (4) to

<
-n
!

E

A

2
41

(

4n

a

X

™

b

) ]|
CcOos

. 2
sin
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(B2)

(B3)
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APPENDIX C

APPLICATION OF FOURIER FINITE SINE TRANSFORMS WITH

RESPECT TO X ON EQUATION (9)

The method of analysis is better explained by the following line diagram ,

Partial Differential Equation Use

With n Independent Variables. Transform With
Respect to One
Independent
Variable.

Partial Differential
Equation of n -1
Independent Variables
and One Transform
Parameter.

 Solve

Substitute Into
Partial Differential

Equation To Check | Solution  |Transformed
The Solution.
Boundary

| Conditions.
|
|
|

Inverse Function
of n Independent

Invert Apply'

Invert

] . Solutio
is the Solution vion

Required.

32

Variables-Which |} =-— — — — — — — —

Apply Successive
Transforms
n-1 Times.

Algebraic Equation
in the Form of n

Transformed Variables.




It is assumed that F(x, y) satisfies the Dirichlet's conditions in the interval
0<x<a.

Then
a

T[F(x, y)] = Flp,y) =f Fx,y) sin 225 dx (C1)
0

is the definition of Fourier finite sine transform with respect to x.

The inverse of (C1) is

a0
2, Flpy) sin 2= (C2)
=1

aln

Fx, y) = 7! [F (ps Y)] =

Applying (C1) on each term of (9), on obtains

4 4 4
T[a:]+ 1[2 2F 2] + T[——a E]
ax dx dy ay

2 4mx
= B] f](y) T[cos 2 ]

. 2 4ux
+ B] f2(y) T [sm 5 ] (C3)
Note T, the sine transform with respect to x treats y asa constant.

The transforms of the derivatives of F are obtained as follows, using the method

of integration by parts:

a
. i - [ BF g BTX g,
2 2 a

d x 0 dx
a a
= -S—E sin L——:X - B f % cos L—:X dx
0 0
where _ pr
S
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=-B2 Flp, y) (C4)
if Fla,y) = F(,y) =0. '

Further note that

2 =
=~ 2 [32 _a_F_(p, Y) (C5)
Similarly,

4 2 2
o' F|_ . |a°F o 92F
T = B[——(O,Y) - (-1 (0,)’)]
[ax4] ax2 ax2

+ BS [F(or y) - (_])p F(a, y)]+ [34 Fp, y) - (Cé6)

2 2
9°F _ 3°F _
2(01)') - 2 (OIY) - 0

ax dx

and

Fla,y) = F(O,y) = 0 ,

then 4 -
T[84F]= ' Fpy) - (C7)
0x

Using (C4) and (C5) in (C3), (C3) reducesto

_ 4
'F- 28 T2+ 21 -8, 1,00 T[c052 4’”‘]
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.2 4
+ By fyy) T [sm ’;x]

The simplification of the expressions on the right hand side of (C8) is performed
in Appendix D. '
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APPENDIX D
FOURIER FINITE SINE TRANSFORMS WITH RESPECT TO X OF

cos2 Awx AND sin2 drx |
a a
a
Tl:cos2 41”(]:_/. cos2 4ux sin P™X dx (DY)
a 0 a a
q 4 2 b :
= 4—-—"./(; cos’ X sin Ir dx (D2)
where
- 4wx
x p—4 —
a

From p. 142 of Ref. 15 , after considerable simplification, (D2) equals

1£8_r55 [{_(_])p + l}-2{§ [(—])P-]] + (—p'-]);-l}]

2
Similarly,
a
TI:sin2 4—12] =f sin2 4mx sin BTX dx ' (D3)
a 0 a a
4n ) _
= ﬁ‘/(; sin” X sin F;— dx (D4)
where
- _ 4mx
x = S ———
a

From p. 140 of Ref. 15 , ofter considerable simplification, (D4) equals

- 2a P 2 1
T Sy -1)F -1 = _
©(8 + p) [( ) ] [P+ 2(2 _%)]
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Note D =

APPENDIX E
SOLUTION OF HOMOGENEOUS EQUATION
4 2 .2 4\ =
0*- 262 0% + §*) F, (b y) = 0

The given equation reduces to

The roots of the equation are

d _ Pm

5y BT &
2 2\2 -

(D - B ) Filpry) =0
D2 = Bz repeated twice.
D = + B repeated twice.

(G T (T T) P

C] sinh By + C2 cosh By

+

C3ysinh By + C4y cosh By -
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APPENDIX F
EVALUATION OF CONSTANTS Ek of (39).

The following constants are assumed for the panel under study.

E = 10.5x% 106
a = 36 (F1)
b = 9
Therefore, i
B = 3%

If X = %E , then (F2)
sech X = 0.9275557714514 (F3)
tanh X = 0.3736847478780. (F4)

Note
2 2
_ 4n T 2
By = F (”a") (F) Ag | (F5)
Further

2
-2 e 039 i e

E2 = ————§——4B (sech X) (F7)
B, a
] 62

By = =9xam B_4 (F8)
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2x 63n (62) 2 4
(5 ;4"
B]o _6_
2x63n ([3
2 x 63w 2 2
4%
 #2)
b
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APPENDIX G

OPTIMIZATION OF (43) BY RITZ-GALERKIN METHOD,

a p+b/2
o=// q 2% daxdy (G1)
0 _b 41
2
‘ 4 in 1
= DV w- h[F w +F w =2F w + w ]
| XX yy yy = xx xy xy h XX
‘ . 4wx ny |
lsm —— cOs dx dy (G2)

[ ot 5w a*w
=/f D=—7 +2D == , +D=F -hF w -hF w
l ax Ix dy dy >y Yy xx

+2hF w - N.w } {sin Amx cosﬂ}dxdy (G3)
Xy = xy xi  xx a b

=//{Dw + 2D w + Dw -hF._w -hF w
XXX xxyy yyyy  oxxiyy O lyy Uxx

+2hF w - N.w Msin Amx cos 1“--Z;dxdy (G4)
Xi o xx a

b




) A4] (sin 4:)( cos ?)(sin “a—x)[E] ch By

2n

+ Eyy shBy + (E3+ E5)+(E4+ Eé)sin —b—y]

- zh(l

a

2

4

)&

(E+E

I

T

1

R (T Hp—

2
6)(%1) sin -i—"y] (sin 4:x cos -TrEZ)

) A4] (cos ?)[E] Bshpy + E2(yﬁch By + sh By)
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+(E4+ Eé) (T)cos %1_1’ y] (cos -A;L)s sin %X)

Cc

S

h

h

3
sin Amx cos %y (kiM—E-h—)}sin dux cos 1Y dx dy
a b2 a

stands for cosh
and
stands for sinhse
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Some integrals utilized in (G5) are evaluated below.

a
. 2 4wx _a
1 f sin 5 dx = 5

0
ad
2) / sin2 Aux sin —— dx = _6_4~a_
0 a a 63n
a

3) %/ cos -1-;—)(- sin 81;x dx = -2—31“
0

L b
2 2 my b
4) _b cos F dy = 7
2
2
4
+.|:2l :’2 sinh Ezh
5) cos —E! cosh py dy = 3
’b 2 An
7 p{B ,
o]

(G6)

(G8)

(G9)

(G10)

b
+ =
2 2w 1 b b
6) / cos ¥ inh d =|l= = cosh
X y p SmBydy =13 3 ET

2
-BTb cosh -BT 2( 2 - i
sinh ;Lb - + sinh Bb (G11)
2 2 2 2
2 47 2 4
o (s
b2 b2
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y cos —EX sinh By dy
2 Bb A Bb
2% cosh £E- 2 sinh 5 ]2“2132 161r4
2 2 2 4
2 4% 2 b b
bﬁ(ﬁ +-—> 2({ .2 4nq
b2) B\F =
b
cos2 —1—), sin 2;:)’ dy = 0
sin _2_1rx sinh dy = 4n sinh t1:]
b By dy ) 4 2 2
b[ﬁ + —’5]
b2
y sin _2%Z cosh By dy
4
= w - cosh_ﬁﬁ’. _._-E_E__ sinh gb
2 4q2 2 2 4n? 2
By By
b b
cos2 ™Y sin EE—Y = 0

(Gl1a)

(G12)

(G13)

(G14)



Let us concentrate our attention on two different thicknesses of the plate, namely,
h = 0.040" (case 1) and h = 0.032" (case 2). The page is divided into two

sections, when the values are different.

Case 1 Cas~ ™
h = 0.040" h = 0.032"
D = 63 Ib. in. D = 32.256 Ib. in.

The integrals of (G5) are evaluated exactly in a closed form, utilizing (G6) to
(G15). The coefficients of A4] and Ai] are listed below.

Case 1 Case 2
303.0505 A, 155.1619 A,
-107.1129x 106 A%, - 8569028 x 10° A
437.1314 x 10° AS, 349. 7051 x 10° AD,
- 544.2502 x 107 Ai] - 435 . 4001 x 10* A%,
- 3144237 kA, - 160 . 9849 kA,

Note k stands for the ratio, total load on the panel over Euler critical load
of the panel. '
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TABLE |
NON-DIMENSIONAL BUCKLE DEPTH

For various in-plane compressive loads, expressed as multiples of buckling load,
investigated for two different values of plate thickness of 0.040" and 0.032".

k 3

] 0.0044

2 0.025

3 0.035

5 0.049
10 0.074
25 0.12
50 0.17
100 0.25
200 0.35
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Figure 2. The problem to be analyzed in this study.
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Figure 3. A plate element of unit width under lateral and in-plane loadings.
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Figure 4. The end view of a plate element under an axial end load P and
lateral acoustic load a; + q, -
) A

Figure 5. The system and the associated response of Figure 5 are equivalent to
those of Figure 4.
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Figure 6. The buckled plate
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